OUR ALGORITHM
Complexity can be simple.
The technology of matched.io is backed by graph-based self-learning algorithms and individual data models.
Target/actual evaluation
The skills and objectives of a developer are compared to the requirements of a job.
Smart Graphs
Programming languages, frameworks, methods and syntax are put into relation.
Requirement analysis
Facts such as salary, starting date and distance to work are considered.
Self-learning algorithm
Each user decision affects the future behavior of the algorithm. This increases the individual quality of the matches.
Non-functional matching
The personality and mindset of a developer are brought into line with the corporate culture.
How does matching work?
The ideal match prediction is achieved through domain knowledge taking into account benchmarks, trends and forecasts. The full automation of the technology accomplishes objectivity and high scalability.